Stable diffusion prompts 使用语法、参数讲解、插件安装教程

本文基于 Stable diffusion WebUI 进行讲解(安装在 AutoDL 上,安装在本地电脑上的也同样适用本教程)。

初始界面:

Stable diffusion prompts 使用语法、参数讲解、插件安装教程插图

文件目录结构:

Stable diffusion prompts 使用语法、参数讲解、插件安装教程插图(1)

上图红框中的 4 个文件夹是我们常用到的,embeddings 放置训练的 embedding 模型,它可以在我们使用基础模型时,再添加此模型进行叠加效果。

Stable diffusion prompts 使用语法、参数讲解、插件安装教程插图(2)

extensions 插件安装目录,在 WebUI 插件安装界面安装后,可以此文件夹中查看,并上传相应的插件模型(如 ControlNet 需要专门的模型)

Stable diffusion prompts 使用语法、参数讲解、插件安装教程插图(3)

Models 模型文件夹,安装时会默认下载 v1-5-pruned-emaonly,我们从其它地方下载的模型可以拷贝到此文件夹,在需要使用某个模型时,可以进行切换,如下图:

Stable diffusion prompts 使用语法、参数讲解、插件安装教程插图(4)

outputs 生成的图系统会输出到这个文件夹里,可进行查看及保存。

Stable diffusion prompts 使用语法、参数讲解、插件安装教程插图(5)

上图从左到右,依次是:

txt2img: 文字生成图片

img2img: 图片生成图片

Extras: “无损”放大图片,优化(清晰、扩展)图像

**PNG info:**从图片 exif 里获取图片的信息,如果是 Stable Diffusion 原始生成的 png 图片,图片的 exif 信息里会写入图片生成参数

**Checkpoint Merger:**合并不同的模型,生成新的模型

**Train:**训练 embedding 或者 hypernetwork

**Settings:**设置页面

**Extensions:**插件的安装和管理页面

txt2img

Stable diffusion prompts 使用语法、参数讲解、插件安装教程插图(6)

**Sampling method:**采样方法

● Euler a :富有创造力,不同步数可以生产出不同的图片。 超过 30~40 步基本就没什么增益了

● Euler:最常见的基础算法,最简单也最快

● DDIM:速度快,一般 20 步差不多

● LMS:eular 的延伸算法,相对更稳定一点,30 步就比较稳定

● PLMS:改进一点的 LMS

● DPM2:DDIM 的一种改进版,速度大约是 DDIM 的两倍

**Sampling Steps:**采样迭代步数

先随机出一个噪声图片,然后一步步调整图片,向提示词 Prompt 靠拢。其实就是告诉 Stable Diffusion,这样的步骤应该进行多少次,步骤越多,每一步移动也就越小越精确,同时也成比例地增加生成图像所需要的时间。大部分采样器超过 50 步后意义就不大了

**Restore faces:**优化面部,绘制面部图像特别注意。原理是调用一个神经网络模型对面部进行修复

**Tiling:**生成一个可以平铺的图像

**Highres. fix:**先生成低分辩率的图,接着添加细节之后再输出,可以把低分辨率的照片调整到高分辨率

Batch count、 Batch size: 都是生成几张图,前者计算时间长,后者需要显存大

**Denoising strength:**决定算法对图像内容的保留程度。因为加的噪声少,原图片部分多,加的噪声多,原图片部分少。在 0 处,什么都不会改变,而在 1 处,你会得到一个不相关的图像

**CFG Scale:**对描述参数的倾向程度(也就是生成图像与提示词的一致程度),越低的值产生越有创意的结果,如果太低,例如 1,那 Promp t就完全没用了。一般在 5~15 之间为好,7,9,12 是 3 个常见的设置值

**Seed:**种子数,只要种子数、参数、模型都一致,就能重新生成一样的图像,-1 的话是生成一个随机数

Prompt 语法

正向提示词例子:

(masterpiece:1.331), best quality,illustration,(1girl),(deep pink hair:1.331), (wavy hair:1.21),(disheveled hair:1.331), messy hair, long bangs, hairs between eyes,(white hair:1.331), multicolored hair,(white bloomers:1.46),(open clothes),beautiful detailed eyes,purple|red eyes),expressionless,sitting,dark background, moonlight,flower_petals,city,full_moon,

**分隔:**不同的关键词tag之间,需要使用英文逗号 , 分隔,逗号前后有空格或者换行不影响结果。例如:1girl,loli,long hair,low twintails(1 个女孩,loli,长发,低双马尾)

**混合:**WebUI 使用 | 分隔多个关键词,实现混合多个要素,注意混合是同等比例、同时混。例如:1girl,red|blue hair, long hair(1个女孩,红色与蓝色头发混合,长发)

**增强/减弱:**有两种写法。

● 第一种 (提示词:权重数值):数值从0.1~100,默认状态是 1,低于 1 就是减弱,大于 1 就是加强。例如:(loli:1.21),(one girl:1.21),(cat ears:1.1),(flower hairpin:0.9)

● 第二种 (((提示词))),每套一层()括号增强 1.1 倍,每套一层 [] 减弱 1.1 倍。也就是套两层是1.1*1.1=1.21 倍,套三层是 1.331 倍,套 4 层是 1.4641 倍。例如: ((loli)),((one girl)),(cat ears),[flower hairpin],这与第一种写法等价,所以还是建议使用第一种方式。

**渐变:**可简单的理解时为,先按某种关键词生成,然后再此基础上向某个方向变化。

[关键词1:关键词2:数字],数字大于 1 理解为第 X 步前为关键词 1,第 X 步后变成关键词 2,数字小于 1 理解为总步数的百分之 X 前为关键词 1,之后变成关键词 2。

例如:a girl with very long [white:yellow:16] hair 等价为开始 a girl with very long white hair

,16步之后 a girl with very long yellow hair

例如:a girl with very long [white:yellow:0.5] hair 等价为开始 a girl with very long white hair,50% 步之后 a girl with very long yellow hair

**交替:**轮流使用关键词,例如:[cow|horse] in a field,这就是个牛与马的混合物;[cow|horse|cat|dog] in a field 就是牛、马、猫、狗之间混合。

**Negative prompt:**负面提示词,用文字描述不想在图像中出现的内容。

一些常见的负面提示词:

lowres,bad anatomy,bad hands,text,error,missing fingers,extra digit,fewer digits,cropped,worst quality,low quality,normal quality,jpeg artifacts,signature,watermark,username,blurry,missing arms,long neck,Humpbacked,missing limb,too many fingers,mutated,poorly drawn,out of frame,bad hands,owres,unclear eyes,poorly drawn,cloned face,bad face

img2img

Stable diffusion prompts 使用语法、参数讲解、插件安装教程插图(7)

与 txt2img 类似,在文字提示词的基础上,增加了图片提示。

Stable diffusion prompts 使用语法、参数讲解、插件安装教程插图(8)

Denoising strength:与原图一致性的程度,一般大于 0.7 出来的都是新效果,小于 0.3 基本就会原图一致

Extras

Stable diffusion prompts 使用语法、参数讲解、插件安装教程插图(9)

主要将图像进行优化,Resize 设置放大的倍率,GFPGAN visibility 主要对图像清晰度进行优化,CodeFormer visibility 对于老照片及人脸修复很有效,权重参数为 0 时效果最大,为 1 时效果最小,建议从 0.5 开始尝试。

Stable diffusion prompts 使用语法、参数讲解、插件安装教程插图(10)

Upscaler 放大算法,一般不清楚可不选,或者选 ESRGAN_4x。

Stable diffusion prompts 使用语法、参数讲解、插件安装教程插图(11)

Batch from Directory 可以进行批量处理,在 Input directory 中输入需要批量处理图片的目录,在 Output directory 中输入保存结果目录。

Stable diffusion prompts 使用语法、参数讲解、插件安装教程插图(12)

Scale to 中,可自定义图片的尺寸。

Extensions

Stable diffusion prompts 使用语法、参数讲解、插件安装教程插图(13)

插件界面,installed 表示已经安装好的插件,Available 表示在线可用的插件,一般都是从这里安装。

点击 Load from: 加载出可用的插件,然后按 Ctrl + F,输入想要安装插件的名称,以此进行查找。

Stable diffusion prompts 使用语法、参数讲解、插件安装教程插图(14)

输入 CN,查找汉化插件:

Stable diffusion prompts 使用语法、参数讲解、插件安装教程插图(15)

安装后,重新启动 UI 界面,插件就可以生效了。

Stable diffusion prompts 使用语法、参数讲解、插件安装教程插图(16)

两个比较重要的插件:Dreambooth,ControlNet。

本站无任何商业行为
个人在线分享-虚灵IT资料分享 » Stable diffusion prompts 使用语法、参数讲解、插件安装教程
E-->